Journal of Applied Mathematics (Jan 2014)
Comparative Analysis of Methods for Regularizing an Initial Boundary Value Problem for the Helmholtz Equation
Abstract
We consider an ill-posed initial boundary value problem for the Helmholtz equation. This problem is reduced to the inverse continuation problem for the Helmholtz equation. We prove the well-posedness of the direct problem and obtain a stability estimate of its solution. We solve numerically the inverse problem using the Tikhonov regularization, Godunov approach, and the Landweber iteration. Comparative analysis of these methods is presented.