AIMS Mathematics (Sep 2020)

Orlicz mixed chord-integrals

  • Chang-Jian Zhao

DOI
https://doi.org/10.3934/math.2020427
Journal volume & issue
Vol. 5, no. 6
pp. 6639 – 6656

Abstract

Read online

In this paper, we introduce an affine geometric quantity and call it Orlicz mixed chord integral by defining a new Orlicz chord addition, which generalizes the mixed chord integrals to Orlicz space. The Minkoswki and Brunn-Minkowski inequalities for the Orlicz mixed chord integrals are established. The new inequalities in special cases yield $L_{p}$-Minkowski and Brunn-Minkowski inequalities for the chord integrals. The related concepts and inequalities of $L_{p}$-mixed chord integrals are derived. As an application, a new isoperimetric inequality for the chord integrals is given. As extensions, Orlicz multiple mixed chord integrals and Orlicz-Aleksandrov-Fenchel inequality for the Orlicz multiple mixed chord integrals are also derived here for the first time.

Keywords