Scientific Reports (Aug 2024)
Oxaliplatin-induced upregulation of exosomal miR-424-3p derived from human bone marrow mesenchymal stem cells attenuates progression of gastric cancer cells
Abstract
Abstract Chemotherapy, particularly with oxaliplatin, is a key treatment for advanced gastric cancer (GC), and exosomes derived from human bone marrow mesenchymal stem cells (hBM-MSCs) play a vital role in the tumor microenvironment. The study aims to elucidate the previously unexplored role of exosomes derived from hBM-MSCs in GC tumorigenesis, especially under the influence of chemotherapy. We conducted an experimental study, utilizing miRNA sequencing and biological experiments, to analyze the tumorigenicity of exosomal miR-424-3p secreted by hBM-MSCs and its target gene RHOXF2 in GC cell lines. The results were confirmed through experimentation using a xenograft mouse model. This study demonstrated the role of hBM-MSCs in the GC microenvironment, focusing on their epithelial-mesenchymal transition (EMT) facilitation through exosomes, which led to enhanced tumorigenicity in GC cells. Intriguingly, this pro-tumor effect was abrogated when hBM-MSCs were treated with oxaliplatin. Exosomal miRNA sequencing revealed that oxaliplatin can upregulate the levels of miR-424-3p in exosomes secreted by hBM-MSCs, thereby inhibiting the EMT process in GC cells. Furthermore, miR-424-3p was identified to target and downregulate RHOXF2 expression, impeding the malignant behavior of GC cells both in vitro and in the mouse model. These findings uncover a potential hidden mechanism of oxaliplatin's anti-tumor action and propose the delivery of miR-424-3p via exosomes as a promising avenue for anti-tumor therapy.
Keywords