Scientific Reports (Oct 2019)

Facile Synthesis of Mesoporous α-Fe2O3@g-C3N4-NCs for Efficient Bifunctional Electro-catalytic Activity (OER/ORR)

  • Osamah Alduhaish,
  • Mohd Ubaidullah,
  • Abdullah M. Al-Enizi,
  • Norah Alhokbany,
  • Saad M. Alshehri,
  • Jahangeer Ahmed

DOI
https://doi.org/10.1038/s41598-019-50780-2
Journal volume & issue
Vol. 9, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Mesoporous α-iron oxide@graphitized-carbon nitride nanocomposites (α-Fe2O3@g-C3N4-NCs) were synthesized using urea-formaldehyde (UF) resins at 400 °C/2 h. The mesoporous nature of the prepared nanocomposites was observed from electron microscopy and surface area measurements. The electrochemical measurements show the bifunctional nature of mesoporous α-Fe2O3@g-C3N4-NCs in electrolysis of water for oxygen evolution and oxygen reduction reactions (OER/ORR) using 0.5 M KOH. Higher current density of mesoporous α-Fe2O3@g-C3N4-NCs reveals the enhanced electrochemical performance compared to pure Fe2O3 nanoparticles (NPs). The onset potential, over-potential and Tafel slopes of mesoporous α-Fe2O3@g-C3N4-NCs were found lower than that of pure α-Fe2O3-NPs. Rotating disc electrode experiments followed by the K-L equation were used to investigate 4e− redox system. Therefore, the mesoporous α-Fe2O3@g-C3N4-NCs bifunctional electro-catalysts can be considered as potential future low-cost alternatives for Pt/C catalysts, which are currently used in fuel cells.