Environmental Research Communications (Jan 2023)
Assessing capacity to deploy direct air capture technology at the country level – an expert and information entropy comparative analysis
Abstract
An ever-dwindling carbon budget, resulting in temperature rise of 1.5 °C above pre-industrial levels projected between 2030–2035, has generated a necessity to explore climate mitigation technologies such as direct air capture (DAC). DAC typically involves the use of materials and energy to capture CO _2 directly from the atmosphere. However, DAC technologies remain a long way from the necessary level of development and scale needed to move the needle on carbon removal and mitigating against climate change. This study conducts a country-level analysis using an expert elicitation and an information entropy method, with a weighted group of variables identified from existing literature as necessary to develop and deploy low-temperature, electrochemical and high-temperature DAC technologies. Here we show that: (1) adopting the expert survey variable weighting, USA, Canada, China and Australia are best positioned to deploy the various DAC technologies; (2) the information entropy approach offers a broadly similar result with traditionally developed nations being best positioned, in addition to land rich countries, to deploy DAC technologies; (3) a comparatively developed policy and financing environment, as well as low carbon energy supply would raise a country’s DAC capacity; (4) developing countries such as China have significant potential to deploy DAC, owing to a well-rounded position across variables. These results produce wide-ranging policy implications for efforts to deploy climate mitigation technologies through the development of a multilateral, coordinated mitigation and carbon dioxide removal deployment strategy.
Keywords