Chimica Techno Acta (Dec 2015)
Supervalent doping of LiFePO4 for enhanced electrochemical performance
Abstract
The orthophosphates LiFe0.9M0.1PO4 with the structure of olivine doped with vanadium and titanium were obtained by mechanochemically stimulated solidphase synthesis using high-energy planetary mill AGO-2 and subsequent annealing at 750 °C. It is shown that V- and Ti- ions do not completely substitute for Fe2+ ions in the LiFePO4 structure. The remaining part of these ions involve in the formation of second phase with nashiko-like structure: monoclinic Li3V2(PO4)3 (space group P21/n ) and rhombohedral LiTi2(PO4)3 (space group R-3c). According to TEM, the average size of the particle of nanocomposites is about 100-300 nm. EMF of microanalysis showed that the small particles of secondary phases are segregated at the surface of larger particles of LiFePO4. On the charge-discharge curves of LiFe0.9M0.1PO4 there are plateau corresponding to LiFePO4 and the second phase. The doping with vanadium increases the resistance of the cycling of LiFePO4 and improves its cyclability at high speeds to a greater extent than in the case of doping with titanium.
Keywords