Frontiers in Energy Research (Aug 2024)

Power shift: quantifying the role of actors in the multi-actor Swiss energy system decentralization

  • Jonas Schnidrig,
  • Jonas Schnidrig,
  • Arthur Chuat,
  • Arthur Chuat,
  • Julia Granacher,
  • Cédric Terrier,
  • François Maréchal,
  • François Maréchal,
  • Manuele Margni,
  • Manuele Margni

DOI
https://doi.org/10.3389/fenrg.2024.1433921
Journal volume & issue
Vol. 12

Abstract

Read online

The global transition to decentralized energy systems signifies a fundamental transformation toward sustainable energy paradigms. This study specifically focuses on the Swiss energy system, analyzing how dynamic pricing influences the strategic decisions of different actors. The main contributions include 1) a detailed examination of pricing models tailored to the Swiss context, 2) an exploration of strategic financial burden shifts among end-users, TSOs, and DSOs, and 3) a comparison of decentralized versus centralized energy models, highlighting their respective efficiencies and resilience. This research differentiates from existing literature by providing an in-depth actor-based analysis within a Swiss context, offering valuable insights into decentralized energy system optimization. This study tackles the problem of how pricing influences strategic decisions across different actors in Switzerland’s evolving decentralized energy landscape. Here we show that a carefully tailored pricing model, designed for the Swiss context, enables optimized strategies that balance local efficiencies with systemic equity and resilience. The analysis reveals that decentralized approaches, in contrast to centralized models, not only accommodate diverse stakeholder preferences but also enhance system robustness against market and operational disruptions. Moreover, the study illustrates the strategic financial burden shifting where end-users compensate for cost shifts, with observed additional costs up to 5200 CHF/year cap when service providers are prioritized as objective actors. Notably, the most frequently selected system configuration in the primal problem, which optimizes the total system costs, aligns with the preferences of TSO and DSO for a 47.1 GW PV deployment. However, end-users demonstrate a preference for increased PV installations, constrained by urban grid capacities. Additionally, the study highlights significant regional disparities across Switzerland, necessitating tailored pricing approaches that reflect varied urban forms. The emergence of prosumers catalyzes new business models, redistributing investments across TSOs (256–261 CHF/cap/year), DSOs (244–413 CHF/cap/year), and prosumers (556–764 CHF/cap/year), showcasing the evolving dynamics of energy system economics.

Keywords