Materials (Jul 2021)

Zinc Complexes with 1,3-Diketones as Activators for Sulfur Vulcanization of Styrene-Butadiene Elastomer Filled with Carbon Black

  • Magdalena Maciejewska,
  • Anna Sowińska,
  • Agata Grocholewicz

DOI
https://doi.org/10.3390/ma14143804
Journal volume & issue
Vol. 14, no. 14
p. 3804

Abstract

Read online

Zinc oxide nanoparticles (N-ZnO) and zinc complexes with 1,3-diketones of different structures were applied instead of microsized zinc oxide (M-ZnO) to activate the sulfur vulcanization of styrene-butadiene rubber (SBR). The influence of vulcanization activators on the cure characteristics of rubber compounds, as well as crosslink density and functional properties of SBR vulcanizates, such as tensile properties, hardness, damping behavior, thermal stability and resistance to thermo-oxidative aging was explored. Applying N-ZnO allowed to reduce the content of zinc by 40% compared to M-ZnO without detrimental influence on the cure characteristic and performance of SBR composites. The activity of zinc complexes in vulcanization seems to strongly depend on their structure, i.e., availability of zinc to react with curatives. The lower the steric hindrance of the substituents and thus the better the availability of zinc ions, the greater was the activity of the zinc complex and consequently the higher the crosslink density of the vulcanizates. Zinc complexes had no detrimental effect on the time and temperature of SBR vulcanization. Despite lower crosslink density, most vulcanizates with zinc complexes demonstrated similar or improved functional properties in comparison with SBR containing M-ZnO. Most importantly, zinc complexes allowed the content of zinc in SBR compounds to be reduced by approximately 90% compared to M-ZnO.

Keywords