PLoS Genetics (Mar 2023)

Rhometa: Population recombination rate estimation from metagenomic read datasets.

  • Sidaswar Krishnan,
  • Matthew Z DeMaere,
  • Dominik Beck,
  • Martin Ostrowski,
  • Justin R Seymour,
  • Aaron E Darling

DOI
https://doi.org/10.1371/journal.pgen.1010683
Journal volume & issue
Vol. 19, no. 3
p. e1010683

Abstract

Read online

Prokaryotic evolution is influenced by the exchange of genetic information between species through a process referred to as recombination. The rate of recombination is a useful measure for the adaptive capacity of a prokaryotic population. We introduce Rhometa (https://github.com/sid-krish/Rhometa), a new software package to determine recombination rates from shotgun sequencing reads of metagenomes. It extends the composite likelihood approach for population recombination rate estimation and enables the analysis of modern short-read datasets. We evaluated Rhometa over a broad range of sequencing depths and complexities, using simulated and real experimental short-read data aligned to external reference genomes. Rhometa offers a comprehensive solution for determining population recombination rates from contemporary metagenomic read datasets. Rhometa extends the capabilities of conventional sequence-based composite likelihood population recombination rate estimators to include modern aligned metagenomic read datasets with diverse sequencing depths, thereby enabling the effective application of these techniques and their high accuracy rates to the field of metagenomics. Using simulated datasets, we show that our method performs well, with its accuracy improving with increasing numbers of genomes. Rhometa was validated on a real S. pneumoniae transformation experiment, where we show that it obtains plausible estimates of the rate of recombination. Finally, the program was also run on ocean surface water metagenomic datasets, through which we demonstrate that the program works on uncultured metagenomic datasets.