Metals (Apr 2022)

Corrosion Inhibition and Rust Conversion of Catechin on Archaeological Iron of Nanhai I

  • Minghao Jia,
  • Pei Hu,
  • Zisang Gong,
  • Jian Sun,
  • Yong Cui,
  • Dongbo Hu,
  • Gang Hu

DOI
https://doi.org/10.3390/met12050714
Journal volume & issue
Vol. 12, no. 5
p. 714

Abstract

Read online

This work took the iron objects from the Nanhai No. 1 shipwreck in the Southern Song Dynasty of China as the sample to test and analyze the application potential of catechin, an environmentally friendly corrosion inhibitor and rust converter. The article used metallographic microscopy to clarify that the structure of the iron artifact was hypereutectic white iron. By means of micro-Raman, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), potentiodynamic polarization and electrochemical impedance spectroscopy, catechin had the ability to react with iron oxyhydroxides such as goethite, akaganeite and lepidocrocite in the rust, forming an amorphous substance with a marked signal about 1380 cm−1 as phenolic-Fe in infrared properties. The new products could make the original rust layer form a laminated dense structure. After the archaeological iron was soaked in 3.0 g/L catechin, the corrosion current density decreased by 37.13% and the corrosion potential shifted positively by 32.67 mV. The anode reaction was more inhibited than the cathode in the polarization curve. The rust resistance in electrochemical impedance increased to 3.75 times and the ion diffusion resistance increased to 6.33 times. The corrosion inhibition efficiency was 21.75% and the rust conversion efficiency was 73.26%. After 36 h of accelerated corrosion, the protection effect of the newly transformed rust layer was still better than that of the original state. Catechin was a mild protection material which showed satisfactory performance for archaeological iron and has a good application prospect.

Keywords