Applied Sciences (Nov 2024)

Effects of CO<sub>2</sub> Aeration and Light Supply on the Growth and Lipid Production of a Locally Isolated Microalga, <i>Chlorella variabilis</i> RSM09

  • Aiya Chantarasiri,
  • Sunisa Ungwiwatkul

DOI
https://doi.org/10.3390/app142210512
Journal volume & issue
Vol. 14, no. 22
p. 10512

Abstract

Read online

The Chlorophyceae algae, specifically Chlorella spp., have been extensively researched for biodiesel production. This study focused on the alga Chlorella variabilis RSM09, which was isolated from a brackish-water environment at Raksamae Bridge in Klaeng District, Rayong Province, Thailand. The effects of the carbon dioxide gas (CO2) concentration (0.03%, 10%, 20%, 30%, 40%, and 50% v/v), light intensity (3000, 5000, and 7000 Lux), and photoperiod (12:12, 18:6, and 24:0 h L/D) on algal growth and lipid production were investigated. The results indicated that C. variabilis RSM09 achieved optimal growth under 20% v/v CO2 aeration, with an optical density of approximately 2.91 ± 0.27, a biomass concentration of 1.32 ± 0.14 g/L, and a lipid content of 21.96 ± 0.29% (wt.). Among the three different light intensities, higher optical density (4.20 ± 0.14), biomass (1.79 ± 0.25 g/L), and lipid content (20.75 ± 2.0% wt.) were at the 5000 Lux of light intensity. Additionally, the photoperiod of 24:0 h (L/D) produced the highest biomass at 1.86 ± 0.21 g/L, followed by the 18:6 h light/dark photoperiod with a biomass of 1.65 ± 0.17 g/L, and the 12:12 h light/dark photoperiod with 1.35 ± 0.43 g/L. In contrast, the 18:6 h L/D photoperiod yielded a higher lipid concentration of 25.22 ± 2.06% (wt.) compared to the others. All cultured microalgae showed significant effects on fatty acid composition. Palmitic (16:0), linoleic (C18:2), and linolenic (C18:3) acids were predominant in C. variabilis RSM09 under all photoperiods. This study exhibited that the microalga C. variabilis RSM09 has great potential as a feedstock for biodiesel production.

Keywords