Molecules (Jan 2019)

Comparison of the Partition Efficiencies of Multiple Phenolic Compounds Contained in Propolis in Different Modes of Acetonitrile–Water-Based Homogenous Liquid–Liquid Extraction

  • Wenbin Chen,
  • Xijuan Tu,
  • Dehui Wu,
  • Zhaosheng Gao,
  • Siyuan Wu,
  • Shaokang Huang

DOI
https://doi.org/10.3390/molecules24030442
Journal volume & issue
Vol. 24, no. 3
p. 442

Abstract

Read online

Homogeneous liquid⁻liquid extraction (HLLE) has attracted considerable interest in the sample preparation of multi-analyte analysis. In this study, HLLEs of multiple phenolic compounds in propolis, a polyphenol-enriched resinous substance collected by honeybees, were performed for improving the understanding of the differences in partition efficiencies in four acetonitrile⁻water-based HLLE methods, including salting-out assisted liquid⁻liquid extraction (SALLE), sugaring-out assisted liquid⁻liquid extraction (SULLE), hydrophobic-solvent assisted liquid⁻liquid extraction (HSLLE), and subzero-temperature assisted liquid⁻liquid extraction (STLLE). Phenolic compounds were separated in reversed-phase HPLC, and the partition efficiencies in different experimental conditions were evaluated. Results showed that less-polar phenolic compounds (kaempferol and caffeic acid phenethyl ester) were highly efficiently partitioned into the upper acetonitrile (ACN) phase in all four HLLE methods. For more-polar phenolic compounds (caffeic acid, p-coumaric acid, isoferulic acid, dimethoxycinnamic acid, and cinnamic acid), increasing the concentration of ACN in the ACN⁻H2O mixture could dramatically improve the partition efficiency. Moreover, results indicated that NaCl-based SALLE, HSLLE, and STLLE with ACN concentrations of 50:50 (ACN:H2O, v/v) could be used for the selective extraction of low-polarity phenolic compounds. MgSO4-based SALLE in the 50:50 ACN⁻H2O mixture (ACN:H2O, v/v) and the NaCl-based SALLE, SULLE, and STLLE with ACN concentrations of 70:30 (ACN:H2O, v/v) could be used as general extraction methods for multiple phenolic compounds.

Keywords