Journal of Fungi (Dec 2022)
β-Xylosidase SRBX1 Activity from <i>Sporisorium reilianum</i> and Its Synergism with Xylanase SRXL1 in Xylose Release from Corn Hemicellulose
Abstract
Sposisorium reilianum is the causal agent of corn ear smut disease. Eleven genes have been identified in its genome that code for enzymes that could constitute its hemicellulosic system, three of which have been associated with two Endo-β-1,4-xylanases and one with α-L-arabinofuranosidase activity. In this study, the native protein extracellular with β-xylosidase activity, called SRBX1, produced by this basidiomycete was analyzed by performing production kinetics and its subsequent purification by gel filtration. The enzyme was characterized biochemically and sequenced. Finally, its synergism with Xylanase SRXL1 was determined. Its activity was higher in a medium with corn hemicellulose and glucose as carbon sources. The purified protein was a monomer associated with the sr16700 gene, with a molecular weight of 117 kDa and optimal activity at 60 °C in a pH range of 4–7, which had the ability to hydrolyze the ρ-nitrophenyl β-D-xylanopyranoside and ρ-Nitrophenyl α-L-arabinofuranoside substrates. Its activity was strongly inhibited by silver ions and presented Km and Vmax values of 2.5 mM and 0.2 μmol/min/mg, respectively, using ρ-nitrophenyl β-D-xylanopyranoside as a substrate. The enzyme degrades corn hemicellulose and birch xylan in combination and in sequential synergism with the xylanase SRXL1.
Keywords