Cellular & Molecular Biology Letters (May 2024)

FTH1 overexpression using a dCasRx translation enhancement system protects the kidney from calcium oxalate crystal-induced injury

  • Ziqi He,
  • Caitao Dong,
  • Tianbao Song,
  • Jiawei Zhou,
  • Tao Xu,
  • Ruyuan He,
  • Sheng Li

DOI
https://doi.org/10.1186/s11658-024-00582-w
Journal volume & issue
Vol. 29, no. 1
pp. 1 – 23

Abstract

Read online

Abstract The engineered clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein (Cas) system is currently widely applied in genetic editing and transcriptional regulation. The catalytically inactivated CasRx (dCasRx) has the ability to selectively focus on the mRNA coding region without disrupting transcription and translation, opening up new avenues for research on RNA modification and protein translation control. This research utilized dCasRx to create a translation-enhancement system for mammals called dCasRx-eIF4GI, which combined eukaryotic translation initiation factor 4G (eIF4GI) to boost translation levels of the target gene by recruiting ribosomes, without affecting mRNA levels, ultimately increasing translation levels of different endogenous proteins. Due to the small size of dCasRx, the dCasRx-eIF4GI translation enhancement system was integrated into a single viral vector, thus optimizing the delivery and transfection efficiency in subsequent applications. Previous studies reported that ferroptosis, mediated by calcium oxalate (CaOx) crystals, significantly promotes stone formation. In order to further validate its developmental potential, it was applied to a kidney stone model in vitro and in vivo. The manipulation of the ferroptosis regulatory gene FTH1 through single-guide RNA (sgRNA) resulted in a notable increase in FTH1 protein levels without affecting its mRNA levels. This ultimately prevented intracellular ferroptosis and protected against cell damage and renal impairment caused by CaOx crystals. Taken together, this study preliminarily validated the effectiveness and application prospects of the dCasRx-eIF4GI translation enhancement system in mammalian cell-based disease models, providing novel insights and a universal tool platform for protein translation research and future therapeutic approaches for nephrolithiasis.

Keywords