Agronomy (Jan 2023)

Comparison between Drift Test Bench and Other Techniques in Spray Drift Evaluation of an Eight-Rotor Unmanned Aerial Spraying System: The Influence of Meteorological Parameters and Nozzle Types

  • Changling Wang,
  • Supakorn Wongsuk,
  • Zhan Huang,
  • Congwei Yu,
  • Leng Han,
  • Jun Zhang,
  • Wenkang Sun,
  • Aijun Zeng,
  • Xiongkui He

DOI
https://doi.org/10.3390/agronomy13010270
Journal volume & issue
Vol. 13, no. 1
p. 270

Abstract

Read online

In the past decade, an unmanned aerial spraying system (UASS) was applied more and more widely for low-volume aerial pesticides spraying operations in China. However, UASS have a higher drift risk due to more fine droplets sprayed with a higher working height and a faster driving speed than ground sprayers. Study on UASS spray drift is a new hot spot within the field of pesticide application technology. The field test bench was originally designed and applied for the measurement of the spray drift potential of ground sprayers. No methodology using the test bench for UASS drift evaluation was reported. Based on our previous study, field drift measurements of an eight-rotor UASS were conducted using three techniques (test bench, ground petri dish, and airborne collection frame) in this study, and the effects of meteorological parameters and nozzle types were investigated, to explore the applicability and the feasibility of the test bench used in UASS field drift evaluation. The test bench is proven promising for direct drift determination of UASS and the described methodology enabled classification of different UASS configurations. Higher wind speeds and finer droplets produced higher drift values. The faster the wind speed and the lower the humidity, the more the spray drift. The test bench can reduce the site requirements and improve the efficiency of the field drift test.

Keywords