Advances in Nonlinear Analysis (Jul 2023)

Estimates for eigenvalues of the Neumann and Steklov problems

  • Du Feng,
  • Mao Jing,
  • Wang Qiaoling,
  • Xia Changyu,
  • Zhao Yan

DOI
https://doi.org/10.1515/anona-2022-0321
Journal volume & issue
Vol. 12, no. 1
pp. 557 – 570

Abstract

Read online

We prove Li-Yau-Kröger-type bounds for Neumann-type eigenvalues of the biharmonic operator on bounded domains in a Euclidean space. We also prove sharp estimates for lower order eigenvalues of a biharmonic Steklov problem and of the Laplacian, which directly implies two sharp Reilly-type inequalities for the corresponding first nonzero eigenvalue.

Keywords