Advances in Nonlinear Analysis (Jul 2023)
Estimates for eigenvalues of the Neumann and Steklov problems
Abstract
We prove Li-Yau-Kröger-type bounds for Neumann-type eigenvalues of the biharmonic operator on bounded domains in a Euclidean space. We also prove sharp estimates for lower order eigenvalues of a biharmonic Steklov problem and of the Laplacian, which directly implies two sharp Reilly-type inequalities for the corresponding first nonzero eigenvalue.
Keywords