Scientific Reports (Jan 2021)
Machine learning predicts lymph node metastasis of poorly differentiated-type intramucosal gastric cancer
Abstract
Abstract To construct a machine learning algorithm model of lymph node metastasis (LNM) in patients with poorly differentiated-type intramucosal gastric cancer. 1169 patients with postoperative gastric cancer were divided into a training group and a test group at a ratio of 7:3. The model for lymph node metastasis was established with python machine learning. The Gbdt algorithm in the machine learning results finds that number of resected nodes, lymphovascular invasion and tumor size are the primary 3 factors that account for the weight of LNM. Effect of the LNM model of PDC gastric cancer patients in the training group: Among the 7 algorithm models, the highest accuracy rate was that of GBDT (0.955); The AUC values for the 7 algorithms were, from high to low, XGB (0.881), RF (0.802), GBDT (0.798), LR (0.778), XGB + LR (0.739), RF + LR (0.691) and GBDT + LR (0.626). Results of the LNM model of PDC gastric cancer patients in test group : Among the 7 algorithmic models, XGB had the highest accuracy rate (0.952); Among the 7 algorithms, the AUC values, from high to low, were GBDT (0.788), RF (0.765), XGB (0.762), LR (0.750), RF + LR (0.678), GBDT + LR (0.650) and XGB + LR (0.619). Single machine learning algorithm can predict LNM in poorly differentiated-type intramucosal gastric cancer, but fusion algorithm can not improve the effect of machine learning in predicting LNM.