Metals (Oct 2024)

Microstructural and Oxidation Effects of Nb Additions to U<sub>3</sub>Si<sub>2</sub>

  • Geronimo Robles,
  • Joshua T. White,
  • Scarlett Widgeon Paisner,
  • Elizabeth S. Sooby

DOI
https://doi.org/10.3390/met14111239
Journal volume & issue
Vol. 14, no. 11
p. 1239

Abstract

Read online

U3Si2 is a long term, accident-tolerant nuclear fuel candidate for light-water reactors because of its superior thermal conductivity and increased uranium density when compared to traditional uranium dioxide (UO2). While reducing internal thermal stresses and increasing efficiency, U3Si2 exhibits energetic oxidation during certain off-normal and accident scenarios, which include coolant or steam exposure. To mitigate this, Nb is investigated as an alloy constituent to enhance corrosion resistance and increase mechanical strength. The work presented investigates the response of Nb-alloyed U3Si2 to steam atmospheres. A thermogravimetric analysis is conducted in flowing steam to T > 1000 °C to assess oxidation resistance. The phase characterization of as-melted, thermally annealed and post-oxidation compositions with up to 12 vol% Nb by powder X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy is reported.

Keywords