Journal of Chemistry (Jan 2022)

Acefylline Derivatives as a New Class of Anticancer Agents: Synthesis, Molecular Docking, and Anticancer, Hemolytic, and Thrombolytic Activities of Acefylline-Triazole Hybrids

  • Irum Shahzadi,
  • Ameer Fawad Zahoor,
  • Bushra Parveen,
  • Azhar Rasul,
  • Zohaib Raza,
  • Sajjad Ahmad,
  • Ali Irfan,
  • Gamal A. El-Hiti

DOI
https://doi.org/10.1155/2022/3502872
Journal volume & issue
Vol. 2022

Abstract

Read online

The synthesis of novel acefyllines and exploring their biological activities attract researchers due to their medicinal applications. Therefore, the current work reports the successful synthesis of a series of novel acefyllines in good yields, and their structures wereconfirmed using various spectroscopic methods. The synthesized acefyllines demonstrated moderate activity (cell viability = 22.55 ± 0.95% − 57.63 ± 3.65%) compared with the starting drug acefylline (cell viability = 80 ± 3.87%) against the human liver carcinoma (Hep G2 cell line). N-(4-Chlorophenyl)-2-(4-(3,4-dichlorophenyl)-5-((1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl)methyl)-4H-1,2,4-triazol-3-ylthio)acetamide exhibited the most potent activity (cell viability = 22.55 ± 0.95%) among the synthesized derivatives. The in silico modeling studies were performed to predict the binding of the most potent derivative with a binding site that agreed with the results of the antiproliferative activity. The newly synthesized heterocycles exhibited the least hemolytic and moderate clot lysis activity.