Pharmaceuticals (Nov 2024)

Application of Integrated Optical Density in Evaluating Insulin Expression in the Endocrine Pancreas During Chronic Ethanol Exposure and β-Carotene Supplementation: A Novel Approach Utilizing Artificial Intelligence

  • Cristian Sandoval,
  • Luciano Canobbi,
  • Álvaro Orrego,
  • Camila Reyes,
  • Felipe Venegas,
  • Ángeles Vera,
  • Francisco Torrens,
  • Bélgica Vásquez,
  • Karina Godoy,
  • Mauricio Zamorano,
  • José Caamaño,
  • Jorge Farías

DOI
https://doi.org/10.3390/ph17111478
Journal volume & issue
Vol. 17, no. 11
p. 1478

Abstract

Read online

Background: β-carotene is an essential antioxidant, providing protection against type 2 diabetes mellitus, cardiovascular illnesses, obesity, and metabolic syndrome. This study investigates the impact of β-carotene on biochemical parameters and pancreatic insulin expression in mice exposed to ethanol. Methods: Thirty-six C57BL/6 mice (Mus musculus) were divided into six groups: 1. C (control), 2. LA (3% alcohol dose), 3. MA (7% alcohol dose), 4. B (0.52 mg/kg body weight/day β-carotene), 5. LA+B (3% alcohol dose + 0.52 mg/kg body weight/day β-carotene), and 6. MA+B (7% alcohol dose plus 0.52 mg/kg body weight/day β-carotene). After 28 days, the animals were euthanized for serum and pancreatic tissue collection. Biochemical analysis and pancreatic insulin expression were performed. One-way ANOVA was used. Results: The B, LA+B, and MA+B groups improved insulin levels and decreased HOMA-β versus the C group, with the LA+B and MA+B groups also showing lower ADH and ALDH levels than their nonsupplemented counterparts (p p < 0.001). Conclusions: In mice, β-cell loss led to increased glucose release due to decreased insulin levels. β-carotene appeared to mitigate ethanol’s impact on these cells, resulting in reduced insulin degradation when integrated optical density was used. These findings suggest that antioxidant supplementation may be beneficial in treating ethanol-induced type 2 diabetes in animal models.

Keywords