PLoS ONE (Jan 2013)

Resistance to degradation and cellular distribution are important features for the antitumor activity of gomesin.

  • Marcus V Buri,
  • Tatiana M Domingues,
  • Edgar J Paredes-Gamero,
  • Rafael L Casaes-Rodrigues,
  • Elaine Guadelupe Rodrigues,
  • Antonio Miranda

DOI
https://doi.org/10.1371/journal.pone.0080924
Journal volume & issue
Vol. 8, no. 11
p. e80924

Abstract

Read online

Many reports have shown that antimicrobial peptides exhibit anticancer abilities. Gomesin (Gm) exhibits potent cytotoxic activity against cancer cells by a membrane pore formation induced after well-orchestrated intracellular mechanisms. In this report, the replacements of the Cys by Ser or Thr, and the use D-amino acids in the Gm structure were done to investigate the importance of the resistance to degradation of the molecule with its cytotoxicity. [Thr(2,6,11,15)]-Gm, and [Ser(2,6,11,15)]-Gm exhibits low cytotoxicity, and low resistance to degradation, and after 24 h are present in localized area near to the membrane. Conversely, the use of D-amino acids in the analogue [D-Thr(2,6,11,15)]-D-Gm confers resistance to degradation, increases its potency, and maintained this peptide spread in the cytosol similarly to what happens with Gm. Replacements of Cys by Thr and Gln by L- or D-Pro ([D-Thr(2,6,11,15), Pro(9)]-D-Gm, and [Thr(2,6,11,15), D-Pro(9)]-Gm), which induced a similar β-hairpin conformation, also increase their resistance to degradation, and cytotoxicity, but after 24 h they are not present spread in the cytosol, exhibiting lower cytotoxicity in comparison to Gm. Additionally, chloroquine, a lysosomal enzyme inhibitor potentiated the effect of the peptides. Furthermore, the binding and internalization of peptides was determined, but a direct correlation among these factors was not observed. However, cholesterol ablation, which increase fluidity of cellular membrane, also increase cytotoxicity and internalization of peptides. β-hairpin spatial conformation, and intracellular localization/target, and the capability of entry are important properties of gomesin cytotoxicity.