Antibiotics (Jun 2024)

Effect of Multiantibiotic-Loaded Bone Cement on the Treatment of Periprosthetic Joint Infections of Hip and Knee Arthroplasties—A Single-Center Retrospective Study

  • Benedikt Paul Blersch,
  • Florian Hubert Sax,
  • Moritz Mederake,
  • Sebastian Benda,
  • Philipp Schuster,
  • Bernd Fink

DOI
https://doi.org/10.3390/antibiotics13060524
Journal volume & issue
Vol. 13, no. 6
p. 524

Abstract

Read online

Background: Two-stage septic revision is the prevailing method for addressing late periprosthetic infections. Using at least dual-antibiotic-impregnated bone cement leads to synergistic effects with a more efficient elution of individual antibiotics. Recent data on the success rates of multiantibiotic cement spacers in two-stage revisions are rare. Methods: We conducted a retrospective follow-up single-center study involving 250 patients with late periprosthetic hip infections and 95 patients with prosthetic knee infections who underwent septic two-stage prosthesis revision surgery between 2017 and 2021. In accordance with the antibiotic susceptibility profile of the microorganisms, a specific mixture of antibiotics within the cement spacer was used, complemented by systemic antibiotic treatment. All patients underwent preoperative assessments and subsequent evaluations at 3, 6, 9, 12, 18, and 24 months post operation and at the most recent follow-up. Results: During the observation period, the survival rate after two-step septic revision was 90.7%. Although survival rates tended to be slightly lower for difficult-to-treat (DTT) microorganism, there was no difference between the pathogen groups (easy-to-treat (ETT) pathogens, methicillin-resistant staphylococci (MRS), and difficult-to-treat (DTT) pathogens). Furthermore, there were no differences between monomicrobial and polymicrobial infections. No difference in the survival rate was observed between patients with dual-antibiotic-loaded bone cement without an additional admixture (Copal® G+C and Copal® G+V) and patients with an additional admixture of antibiotics to proprietary cement. Conclusion: Employing multiple antibiotics within spacer cement, tailored to pathogen susceptibility, appears to provide reproducibly favorable success rates, even in instances of infections with DTT pathogens and polymicrobial infections.

Keywords