Molecular Plant-Microbe Interactions (Jun 2006)

Arabidopsis Displays Centromeric DNA Hypomethylation and Cytological Alterations of Heterochromatin Upon Attack by Pseudomonas syringae

  • Valeria Pavet,
  • Cristián Quintero,
  • Nicolás M. Cecchini,
  • Alberto L. Rosa,
  • María E. Alvarez

DOI
https://doi.org/10.1094/MPMI-19-0577
Journal volume & issue
Vol. 19, no. 6
pp. 577 – 587

Abstract

Read online

Plant tissues display major alterations upon the perception of microbial pathogens. Changes of cytoplasmic and apo-plastic components that sense and transduce plant defenses have been extensively characterized. In contrast, less information is available about modifications affecting the plant nuclear genome under these circumstances. Here, we investigated whether the Arabidopsis thaliana DNA methylation status is altered in tissues responding to the attack of Pseudomonas syringae pv. tomato DC3000. We applied amplified fragment length polymorphism analysis to monitor cytosine methylation at anonymous 5′-CCGG-3′ and 5′-GATC-3′ sites in naïve and infected samples. Plant genomic fragments reducing methylation upon infection, including peri/centromeric repeats such as the 180-bp unit, Athila retrotansposon, and a portion of the nuclear insertion of mitochondrial DNA, were isolated and characterized. P. syringae pv. tomato-induced hypomethylation was detected by high-performance liquid chromatography assays and at the molecular level it did not seem to equally affect all 5-methyl cytosine (5-mC) residues. Nuclei from challenged tissues displayed structural chromatin alterations, including loosening of chromocenters, which also were stimulated by avirulent P. syringae pv. tomato, but not by the P. syringae pv. tomato hrpL¯ mutant. Finally, P. syringae pv. tomato-induced hypomethylation was found to occur in the absence of DNA replication, suggesting that it involves an active demethylation mechanism. All these responses occurred at 1 day postinfection, largely preceding massive plant cell death generated by pathogen attack.

Keywords