Cell Reports (May 2021)
mTOR signaling regulates gastric epithelial progenitor homeostasis and gastric tumorigenesis via MEK1-ERKs and BMP-Smad1 pathways
Abstract
Summary: mTOR, the sensor of nutrients and growth factors, has important roles in tissue homeostasis and tumorigenesis. However, how mTOR controls gastric epithelial cell turnover and gastric cancer development, a leading malignancy, remains poorly understood. Here, we provide genetic evidence that mTOR activation promotes proliferation and inhibits differentiation of Lgr5+ gastric epithelial progenitors (GEPs) in gastric homeostasis and tumorigenesis. mTOR signaling increases MEK1 and Smad1 expression and enhances activation of MEK1-ERKs and BMP-Smad1 pathways, respectively, in GEPs and gastric tumors. Mek1 deletion or inhibition rescues hyperproliferation, whereas Bmpr1a ablation or inhibition rescues differentiation defects of Tsc1−/− GEPs. Tsc1 deficiency in Lgr5+ GEPs accelerates gastric tumor initiation and development, which require MEK1-ERKs for hyperplasia and BMP-Smad1 for differentiation suppression. These findings reveal how mTOR signaling controls Lgr5+ GEP homeostasis and cancerization and suggest that ERKs and Smad1 signaling can be safely targeted to substitute mTOR inhibitors in gastric cancer therapy.