Nanomaterials (Oct 2019)

Functional Properties of Poly(Trimethylene Terephthalate)-Block-Poly(Caprolactone) Based Nanocomposites Containing Graphene Oxide (GO) and Reduced Graphene Oxide (rGO)

  • Sandra Paszkiewicz,
  • Daria Pawlikowska,
  • Magdalena Kurcz,
  • Anna Szymczyk,
  • Izabela Irska,
  • Rafał Stanik,
  • Maik Gude,
  • Amelia Linares,
  • Tiberio A. Ezquerra,
  • Ludwika Lipińska,
  • Michał Woluntarski,
  • Agata Zubkiewicz,
  • Elżbieta Piesowicz

DOI
https://doi.org/10.3390/nano9101459
Journal volume & issue
Vol. 9, no. 10
p. 1459

Abstract

Read online

This work reports a study on the influence of graphene oxide (GO) and reduced graphene oxide (rGO) on the functional properties of poly(trimethylene terephthalate)-block-poly(caprolactone) (PTT-block-PCL-T) (75/25 wt.%/wt.%) copolymer, obtained from dimethyl terephthalate (DMT), 1,3-biopropanediol and polycaprolactone diol (PCL) via in situ polymerization. The article presents, if and how the reduction of graphene oxide, in comparison to the non-reduced one, can affect morphological, thermal, electrical and mechanical properties. SEM examination confirms/reveals the homogeneous distribution of GO/rGO nanoplatelets in the PTT-block-PCL-T copolymer matrix. More than threefold increase in the value of the tensile modulus is achieved by the addition of 1.0 wt.% of GO and rGO. Moreover, the thermal conductivity and thermal stability of the GO and rGO-based nanocomposites are also improved. The differential scanning calorimetry (DSC) measurement indicates that the incorporation of GO and rGO has a remarkable impact on the crystallinity of the nanocomposites (an increase of crystallization temperature up to 58 °C for nanocomposite containing 1.0 wt.% of GO is observed). Therefore, the high performances of the PTT-block-PCL-T-based nanocomposites are mainly attributed to the uniform dispersion of nanoplatelets in the polymer matrix and strong interfacial interactions between components.

Keywords