Polymers (Aug 2021)

Introducing Deep Eutectic Solvents as a Water-Free Dyeing Medium for Poly (1,4-cYclohexane Dimethylene Isosorbide Terephthalate) PICT Nanofibers

  • Nadir Hussain,
  • Sadam Hussain,
  • Mujahid Mehdi,
  • Muzamil Khatri,
  • Sana Ullah,
  • Zeeshan Khatri,
  • Lieva Van Langenhove,
  • Ick Soo Kim

DOI
https://doi.org/10.3390/polym13162594
Journal volume & issue
Vol. 13, no. 16
p. 2594

Abstract

Read online

Water, one of the most priceless sources of life, is becoming dangerously threatened and contaminated due to population growth, industrial development, and climatic variations. The drainage of industrial, farming, and municipal sewage into drinking water sources pollutes the water. The textile processing industry is one of the major consumers of water. Herein, the idea of water-free dyeing of electrospun poly (1, 4-cyclohexane dimethylene isosorbide terephthalate) PICT nanofibers is proposed. For this, two different deep eutectic solvents (DE solvents) were introduced as an alternative to water for the dyeing of PICT nanofibers in order to develop a water-free dyeing medium. For this, C.I. disperse red 167 was used as a model dye to improve the aesthetic properties of PICT nanofibers. PICT nanofibers were dyed by conventional batch dyeing and ultrasonic dyeing methods to investigate the effect of the dyeing technique on color buildup characteristics. Dyeing conditions such as dyeing time, temperature and, dye-concentration were optimized. Morphological and chemical characterization observations revealed a smooth morphology of dyed and undyed PICT nanofibers. The ultrasonically dyed nanofibers showed higher color strength and increased tensile strength compared to conventionally dyed nanofibers. Further, the consumption of electrical and thermal energy was also calculated for both processes. The results confirmed that the ultrasonic dyeing method can save 58% on electrical energy and 25% on thermal energy as compared to conventional dyeing.

Keywords