Energies (Dec 2023)

Ozone Transport in 311 MVA Hydrogenerator: Computational Fluid Dynamics Modelling of Three-Dimensional Electric Machine

  • Rodrigo M. S. de Oliveira,
  • Gustavo G. Girotto,
  • Licinius D. S. de Alcantara,
  • Nathan M. Lopes,
  • Victor Dmitriev

DOI
https://doi.org/10.3390/en16248072
Journal volume & issue
Vol. 16, no. 24
p. 8072

Abstract

Read online

In this paper, a three-dimensional turbulent fluid dynamics numerical model of a 311 MVA full hydroelectric power plant unit is made, using the finite element method, to study and understand the ozone transport mechanisms inside the enclosured electric machine structure. In the real world, ozone is produced by partial discharges related to faults on stator bars. In order to analyse ozone transport from localised sources, a 3D fluid dynamic model of a complete hydrogenerator in operation is developed and presented for the first time. The model has a high level of geometric detail. Furthermore, a new proposal to simplify the modelling of radiators is implemented and validated. The modelled structure is based on a Campos Novos hydrogenerator electric machine and it consists of 378 coil-type stator bars made of copper covered by mica and, more externally, by a semiconductor coating layer. Other parts are also represented, including the stator core and air directors made of stainless steel, copper radiators, the rotor with its epoxy surface, and the concrete floor and concrete external walls. In the fluid dynamics model, a finite element mesh was designed to represent the air regions inside the hydrogenerator and the material surfaces that react with ozone (with their respective reaction rates), where the airflow and ozone transport are modelled using the Navier–Stokes equations and the mass conservation law. Partial discharge sources are represented by ozone sources with prismatic shapes, placed on surfaces of stator bars. Ozone concentrations have been calculated inside and around the generator machine. The rotor radius is 3.8075 m and its rotation frequency is 200 RPM. Radial air velocity due to interpole ventilation is also considered (2.2 m/s, as experimentally verified in loco. The radial velocity in the vicinity of the radiators is 3 m/s. It has been concluded that the ozone transport profile is influenced by the source positioning on the stator bars in such a way that source pinpointing is possible and it depends on determining the local and global maxima areas of ozone concentration at the radiators.

Keywords