International Journal of Molecular Sciences (Jul 2019)

A Dual GLP-1/GIP Receptor Agonist Does Not Antagonize Glucagon at Its Receptor but May Act as a Biased Agonist at the GLP-1 Receptor

  • Noura Al-Zamel,
  • Suleiman Al-Sabah,
  • Yunus Luqmani,
  • Lobna Adi,
  • Siby Chacko,
  • Tom Dario Schneider,
  • Cornelius Krasel

DOI
https://doi.org/10.3390/ijms20143532
Journal volume & issue
Vol. 20, no. 14
p. 3532

Abstract

Read online

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are important regulators of metabolism, making their receptors (GLP-1R and GIPR) attractive targets in the treatment of type 2 diabetes mellitus (T2DM). GLP-1R agonists are used clinically to treat T2DM but the use of GIPR agonists remains controversial. Recent studies suggest that simultaneous activation of GLP-1R and GIPR with a single peptide provides superior glycemic control with fewer adverse effects than activation of GLP-1R alone. We investigated the signaling properties of a recently reported dual-incretin receptor agonist (P18). GLP-1R, GIPR, and the closely related glucagon receptor (GCGR) were expressed in HEK-293 cells. Activation of adenylate cyclase via Gαs was monitored using a luciferase-linked reporter gene (CRE-Luc) assay. Arrestin recruitment was monitored using a bioluminescence resonance energy transfer (BRET) assay. GLP-1, GIP, and glucagon displayed exquisite selectivity for their receptors in the CRE-Luc assay. P18 activated GLP-1R with similar potency to GLP-1 and GIPR with higher potency than GIP. Interestingly, P18 was less effective than GLP-1 at recruiting arrestin to GLP-1R and was inactive at GCGR. These data suggest that P18 can act as both a dual-incretin receptor agonist, and as a G protein-biased agonist at GLP-1R.

Keywords