Mathematics (Oct 2021)

Structural Properties of Connected Domination Critical Graphs

  • Norah Almalki,
  • Pawaton Kaemawichanurat

DOI
https://doi.org/10.3390/math9202568
Journal volume & issue
Vol. 9, no. 20
p. 2568

Abstract

Read online

A graph G is said to be k-γc-critical if the connected domination number γc(G) is equal to k and γc(G+uv)k for any pair of non-adjacent vertices u and v of G. Let ζ be the number of cut vertices of G and let ζ0 be the maximum number of cut vertices that can be contained in one block. For an integer ℓ≥0, a graph G is ℓ-factor critical if G−S has a perfect matching for any subset S of vertices of size ℓ. It was proved by Ananchuen in 2007 for k=3, Kaemawichanurat and Ananchuen in 2010 for k=4 and by Kaemawichanurat and Ananchuen in 2020 for k≥5 that every k-γc-critical graph has at most k−2 cut vertices and the graphs with maximum number of cut vertices were characterized. In 2020, Kaemawichanurat and Ananchuen proved further that, for k≥4, every k-γc-critical graphs satisfies the inequality ζ0(G)≤mink+23,ζ. In this paper, we characterize all k-γc-critical graphs having k−3 cut vertices. Further, we establish realizability that, for given k≥4, 2≤ζ≤k−2 and 2≤ζ0≤mink+23,ζ, there exists a k-γc-critical graph with ζ cut vertices having a block which contains ζ0 cut vertices. Finally, we proved that every k-γc-critical graph of odd order with minimum degree two is 1-factor critical if and only if 1≤k≤2. Further, we proved that every k-γc-critical K1,3-free graph of even order with minimum degree three is 2-factor critical if and only if 1≤k≤2.

Keywords