PLoS ONE (Jan 2013)

An attempt to detect siRNA-mediated genomic DNA modification by artificially induced mismatch siRNA in Arabidopsis.

  • Yosuke Miyagawa,
  • Jun Ogawa,
  • Yuji Iwata,
  • Nozomu Koizumi,
  • Kei-ichiro Mishiba

DOI
https://doi.org/10.1371/journal.pone.0081326
Journal volume & issue
Vol. 8, no. 11
p. e81326

Abstract

Read online

Although tremendous progress has been made in recent years in identifying molecular mechanisms of small interfering RNA (siRNA) functions in higher plants, the possibility of direct interaction between genomic DNA and siRNA remains an enigma. Such an interaction was proposed in the 'RNA cache' hypothesis, in which a mutant allele is restored based on template-directed gene conversion. To test this hypothesis, we generated transgenic Arabidopsis thaliana plants conditionally expressing a hairpin dsRNA construct of a mutated acetolactate synthase (mALS) gene coding sequence, which confers chlorsulfuron resistance, in the presence of dexamethasone (DEX). In the transgenic plants, suppression of the endogenous ALS mRNA expression as well as 21-nt mALS siRNA expression was detected after DEX treatment. After screening >100,000 progeny of the mALS siRNA-induced plants, no chlorsulfuron-resistant progeny were obtained. Further experiments using transgenic calli also showed that DEX-induced expression of mALS siRNA did not affect the number of chlorsulfuron-resistant calli. No trace of cytosine methylation of the genomic ALS region corresponding to the dsRNA region was observed in the DEX-treated calli. These results do not necessarily disprove the 'RNA cache' hypothesis, but indicate that an RNAi machinery for ALS mRNA suppression does not alter the ALS locus, either genetically or epigenetically.