OENO One (May 2019)

Seasonal differences in Vitis vinifera L. cv. Pinot noir fruit and wine quality in relation to climate

  • Magali Blank,
  • Marco Hofmann,
  • Manfred Stoll

DOI
https://doi.org/10.20870/oeno-one.2019.53.2.2427
Journal volume & issue
Vol. 53, no. 2

Abstract

Read online

Aims: A better understanding of the relationship between weather conditions and wine quality would provide tools for assessing the impact of climate change and the potential for adaptation. Most studies rely on assessing wine quality by the price per bottle or by an overall ranking and then establishing general relations to weather conditions. However, such an approach may imply the addition of bias by variable winemaking techniques overcoming vintage effects. The aim of our study was therefore to implement a controlled conditions approach using grape samples from a single vineyard and a standardized micro-scale winemaking technique to produce wines in similar conditions for each vintage over more than a decade. We hope that this data will allow new insights into responses to climatic differences. Methods and results: From 2005 to 2015, data was collected from a vineyard of Hochschule Geisenheim University planted with Vitis vinifera L. cv. Pinot Noir grafted on rootstock SO4 in four field replicates. Weather conditions were recorded together with the major phenological stages, yield, infection of the bunches by Botrytis cinerea bunch rot, and pruning weight. Key primary juice compounds were analyzed and berry phenolics in skins and seeds were determined before harvest. Micro-scale winemaking was developed to produce wines in standardized conditions. The repeatability of the method to assess the extraction of anthocyanins and tannins was shown to be 2–10% and 8–12%, respectively, depending on grape maturity stage. Sugar accumulation was coupled to warmer conditions during the maturation period, and high temperatures after véraison decreased the concentration of malic acid in the juice. The accumulation of primary amino acids (N-OPA) in the juices seemed positively related to warmer conditions between bud break and flowering. Increased temperature, especially before véraison, accompanied by a lack of precipitation was related to an accumulation of tannins in fruit and wine, with a higher accumulation in skins than seeds. The temperature-sensitive anthocyanin accumulation in grapes was coupled to warmer conditions after véraison. These differences in anthocyanin concentration could also be observed in the wine. Conclusions: High-quality vintages were linked to warmer than normal growing seasons and below normal precipitation. Significance and impact of the study: The use of a micro-scale winemaking technique represents an innovative tool to provide detailed information in a controlled and reproducible way. A better understanding of the interaction between weather conditions and berry/wine compounds will help with developing improved winemaking techniques and better adapting to future impacts of climate change.

Keywords