PLoS Computational Biology (Aug 2016)

Cortico-Cortical Interactions during Acquisition and Use of a Neuroprosthetic Skill.

  • Jeremiah D Wander,
  • Devapratim Sarma,
  • Lise A Johnson,
  • Eberhard E Fetz,
  • Rajesh P N Rao,
  • Jeffrey G Ojemann,
  • Felix Darvas

DOI
https://doi.org/10.1371/journal.pcbi.1004931
Journal volume & issue
Vol. 12, no. 8
p. e1004931

Abstract

Read online

A motor cortex-based brain-computer interface (BCI) creates a novel real world output directly from cortical activity. Use of a BCI has been demonstrated to be a learned skill that involves recruitment of neural populations that are directly linked to BCI control as well as those that are not. The nature of interactions between these populations, however, remains largely unknown. Here, we employed a data-driven approach to assess the interaction between both local and remote cortical areas during the use of an electrocorticographic BCI, a method which allows direct sampling of cortical surface potentials. Comparing the area controlling the BCI with remote areas, we evaluated relationships between the amplitude envelopes of band limited powers as well as non-linear phase-phase interactions. We found amplitude-amplitude interactions in the high gamma (HG, 70-150 Hz) range that were primarily located in the posterior portion of the frontal lobe, near the controlling site, and non-linear phase-phase interactions involving multiple frequencies (cross-frequency coupling between 8-11 Hz and 70-90 Hz) taking place over larger cortical distances. Further, strength of the amplitude-amplitude interactions decreased with time, whereas the phase-phase interactions did not. These findings suggest multiple modes of cortical communication taking place during BCI use that are specialized for function and depend on interaction distance.