Earth, Planets and Space (Aug 2022)
Space weathering signatures in sulfide and silicate minerals from asteroid Itokawa
Abstract
Abstract Transmission electron microscopy analyses of the polymineralic regolith particle RC-MD01-0025 show microstructural and microchemical characteristics indicative of space weathering on the surface of asteroid Itokawa. The depletion of sulfur and nickel was identified in space weathered rims on troilite and pentlandite minerals. This corresponds to the first report of nickel depletion in samples returned from asteroid Itokawa by the Hayabusa mission. Microstructurally, the sulfide minerals present crystalline rims and the olivine presents both crystalline and amorphous zones in the rim. These results suggest that sulfides might be more resistant to amorphization caused by solar wind irradiation. The space weathering features identified in the regolith particle analyzed here are likely formed via solar wind irradiation. Additionally, the differences in the space weathering features in olivine, pentlandite, and troilite suggest that silicates and sulfides respond differently to the same space weathering conditions in interplanetary space. Graphical Abstract
Keywords