Communications Biology (Aug 2021)
14-3-3 proteins inactivate DAPK2 by promoting its dimerization and protecting key regulatory phosphosites
Abstract
Horvath et al. structurally and biochemically characterize the full-length human DAPK2-14-3-3 complex to investigate the effects of binding to DAPK2 on its dimerization, activation by dephosphorylation of Ser318, and Ca2+/calmodulin binding. Their results provide mechanistic insights into 14- 3-3-mediated DAPK2 inhibition and highlight the potential of the DAPK2:14-3-3 complex as a target for anti-inflammatory therapies.