International Journal of Noncommunicable Diseases (Jan 2018)
Segmentation of jet area to quantity the severity of mitral regurgitation by color Doppler echocardiography
Abstract
Mitral regurgitation (MR) is a disorder of mitral valve and it is one of the most common causes of cardiovascular morbidity and mortality. Mitral valve allows blood to flow from left atrium, to the left ventricle and Mitral Valve regurgitation results in poor apposition of the valvular leaflets, so that the heart's mitral valve doesn't close tightly, allowing blood to flow backward into the left atrium. Transthoracic Echocardiography (TTE) with Doppler is the widely used non-invasive technology for the detection and evaluation of severity of valvular regurgitation. Proximal isovelocity surface area (PISA) method has been widely accepted by clinicians as a means for grading MR severity. In this paper an alternate method to PISA to automatically quantify mitral valve regurgitation severity is proposed. This work attempts to automatically segment the jet region in color Doppler images using K-Means clustering. Further to quantify mitral regurgitation, jet area parameters and shape features are extracted from the segmented jet region which are then modeled using classifiers such as Support Vector machine (SVM) and Back Propagation Neural Network (BPNN). Quantifying MR with PISA calls for considerable expertise as a number of components must be taken into account to fully assess the severity of mitral regurgitation, however the results of the proposed method indicate that it could be used as an alternate method to automatically assess the severity of mitral regurgitation.
Keywords