Molecules (Oct 2023)

Hemolysis by Saponin Is Accelerated at Hypertonic Conditions

  • Boyana Paarvanova,
  • Bilyana Tacheva,
  • Gergana Savova,
  • Miroslav Karabaliev,
  • Radostina Georgieva

DOI
https://doi.org/10.3390/molecules28207096
Journal volume & issue
Vol. 28, no. 20
p. 7096

Abstract

Read online

Saponins are a large group of organic amphiphilic substances (surfactants) mainly extracted from herbs with biological activity, considered as one of the main ingredients in numerous remedies used in traditional medicine since ancient times. Anti-inflammatory, antifungal, antibacterial, antiviral, antiparasitic, antitumor, antioxidant and many other properties have been confirmed for some. There is increasing interest in the elucidation of the mechanisms behind the effects of saponins on different cell types at the molecular level. In this regard, erythrocytes are a very welcome model, having very simple structures with no organelles. They react to changing external conditions and substances by changing shape or volume, with damage to their membrane ultimately leading to hemolysis. Hemolysis can be followed spectrophotometrically and provides valuable information about the type and extent of membrane damage. We investigated hemolysis of erythrocytes induced by various saponin concentrations in hypotonic, isotonic and hypertonic media using measurements of real time and end-point hemolysis. The osmotic pressure was adjusted by different concentrations of NaCl, manitol or a NaCl/manitol mixture. Unexpectedly, at a fixed saponin concentration, hemolysis was accelerated at hypertonic conditions, but was much faster in NaCl compared to mannitol solutions at the same osmotic pressure. These findings confirm the colloid-osmotic mechanism behind saponin hemolysis with pore formation with increasing size in the membrane.

Keywords