Frontiers in Bioscience-Landmark (Jan 2022)

ABCB1 limits the cytotoxic activity of TAK-243, an inhibitor of the ubiquitin-activating enzyme UBA1

  • Zhuoxun Wu,
  • Yuqi Yang,
  • Zining Lei,
  • Silpa Narayanan,
  • Jingquan Wang,
  • Qiuxu Teng,
  • Megumi Murakami,
  • Suresh V. Ambudkar,
  • Fengfeng Ping,
  • Zhesheng Chen

DOI
https://doi.org/10.31083/j.fbl2701005
Journal volume & issue
Vol. 27, no. 1
p. 005

Abstract

Read online

Background: One of the major concerns of cancer therapy is the emergence of multidrug resistance (MDR). The MDR-associated ATP-binding cassette sub-family B member 1 (ABCB1) transporter is established to mediate resistance against numerous anticancer drugs. In this study, we demonstrated that the Ubiquitin-like modifier activating enzyme 1 (UBA1) inhibitor TAK-243 is transported by the ABCB1. Methods: MTT assay was performed to evaluate the cytotoxicity of TAK-243. Western blot was carried out to investigate if TAK-243 affect to ABCB1 protein expression in cancer cells. High Performance Liquid Chromatography (HPLC) and ATPase assay were carried out to confirm TAK-243 as an ABCB1 substrate. [3H]-paclitaxel accumulation assay was used to determine the MDR reversal effect of TAK-243. Computational docking analysis was performed to investigate the drug-transporter binding position. Results: The cytotoxicity profile showed that TAK-243 was less effective in ABCB1-overexpressing cells than in the parental cells, but pharmacological inhibition or knockout the gene of ABCB1 was able to reverse TAK-243 resistance. Furthermore, TAK-243 potently stimulated ABCB1 ATPase activity and the HPLC analysis revealed that TAK-243 accumulation was significantly reduced in ABCB1-overexpressing cells. Finally, the computational docking analysis indicates a high binding affinity between TAK-243 and human ABCB1 transporter. Conclusions: Our in vitro data characterized TAK-243 as a substrate of ABCB1, which may predict limited anticancer effect of this compound in drug resistant tumors.

Keywords