Nanoscale Research Letters (Jan 2011)

Nanoscale characterization of electrical transport at metal/3C-SiC interfaces

  • Leone Stefano,
  • Reshanov Sergey,
  • Eriksson Jens,
  • Roccaforte Fabrizio,
  • Giannazzo Filippo,
  • LoNigro Raffaella,
  • Fiorenza Patrick,
  • Raineri Vito

Journal volume & issue
Vol. 6, no. 1
p. 120

Abstract

Read online

Abstract In this work, the transport properties of metal/3C-SiC interfaces were monitored employing a nanoscale characterization approach in combination with conventional electrical measurements. In particular, using conductive atomic force microscopy allowed demonstrating that the stacking fault is the most pervasive, electrically active extended defect at 3C-SiC(111) surfaces, and it can be electrically passivated by an ultraviolet irradiation treatment. For the Au/3C-SiC Schottky interface, a contact area dependence of the Schottky barrier height (ΦB) was found even after this passivation, indicating that there are still some electrically active defects at the interface. Improved electrical properties were observed in the case of the Pt/3C-SiC system. In this case, annealing at 500°C resulted in a reduction of the leakage current and an increase of the Schottky barrier height (from 0.77 to 1.12 eV). A structural analysis of the reaction zone carried out by transmission electron microscopy [TEM] and X-ray diffraction showed that the improved electrical properties can be attributed to a consumption of the surface layer of SiC due to silicide (Pt2Si) formation. The degradation of Schottky characteristics at higher temperatures (up to 900°C) could be ascribed to the out-diffusion and aggregation of carbon into clusters, observed by TEM analysis.