Applied Sciences (Jan 2024)
Method of Improving the Management of Cancer Risk Groups by Coupling a Features-Attention Mechanism to a Deep Neural Network
Abstract
(1) Background: Lung cancers are the most common cancers worldwide, and prostate cancers are among the second in terms of the frequency of cancers diagnosed in men. Automatic ranking of the risk groups of such diseases is highly in demand, but the clinical practice has shown us that, for a sensitive screening of the clinical parameters using an artificial intelligence system, a customarily defined deep neural network classifier is not sufficient given the usually small size of medical datasets. (2) Methods: In this paper, we propose a new management method of cancer risk groups based on a supervised neural network model that is further enhanced by using a features attention mechanism in order to boost its level of accuracy. For the analysis of each clinical parameter, we used local interpretable model-agnostic explanations, which is a post hoc model-agnostic technique that outlines feature importance. After that, we applied the feature-attention mechanism in order to obtain a higher weight after training. We tested the method on two datasets, one for binary-class in cases of thoracic cancer and one for multi-class classification in cases of urological cancer, to demonstrate the wide availability and versatility of the method. (3) Results: The accuracy levels of the models trained in this way reached values of more than 80% for both clinical tasks. (4) Conclusions: Our experiments demonstrate that, by using explainability results as feedback signals in conjunction with the attention mechanism, we were able to increase the accuracy of the base model by more than 20% on small medical datasets, reaching a critical threshold for providing recommendations based on the collected clinical parameters.
Keywords