E3S Web of Conferences (Jan 2019)
Inclinometric method for determining the mechanical state of an overhead power transmission line
Abstract
Mechanical deformations when a wire is stretched causes its rotation around its axis, which allows obtaining additional information about the wire behavior in an overhead transmission line and considering it no longer as a group of sections from one span but as a whole interconnected section with redistribution of mechanical loads between spans. To determine the tensile strength of wire by its torsion, a method for determining the mechanical parameters of an overhead transmission line was developed. It is based on the inclinometric method and the theory of force calculation of steel ropes. This technique takes into account the torsion, the angle of inclination and the wire temperature. The technique is implemented in the system for monitoring the status of overhead power lines. It takes into account the torsion angle of the wire and helps to prevent emergencies on the overhead power line by determining the tensile strength of the wire, checking for defects in wires of the overhead power line and defects in the suspension armature. The monitoring system includes control devices, data collection and data processing center, a dispatcher software package. Control devices are installed directly on the wire/ground wire of an overhead power line and are used to measure the angle of rotation, the angle of inclination and the wire temperature. The data collection and data processing station processes them according to the developed methodology in specialized software. The system for monitoring the status of overhead power lines based on the inclinometric method helps to prevent emergencies and reduce the economic costs of maintaining and restoring overhead power lines.