NeuroImage (Jul 2021)
The NIMH Intramural Longitudinal Study of the Endocrine and Neurobiological Events Accompanying Puberty: Protocol and rationale for methods and measures
Abstract
Delineating the relationship between human neurodevelopment and the maturation of the hypothalamic-pituitary-gonadal (HPG) axis during puberty is critical for investigating the increase in vulnerability to neuropsychiatric disorders that is well documented during this period. Preclinical research demonstrates a clear association between gonadal production of sex steroids and neurodevelopment; however, identifying similar associations in humans has been complicated by confounding variables (such as age) and the coactivation of two additional endocrine systems (the adrenal androgenic system and the somatotropic growth axis) and requires further elucidation. In this paper, we present the design of, and preliminary observations from, the ongoing NIMH Intramural Longitudinal Study of the Endocrine and Neurobiological Events Accompanying Puberty. The aim of this study is to directly examine how the increase in sex steroid hormone production following activation of the HPG-axis (i.e., gonadarche) impacts neurodevelopment, and, additionally, to determine how gonadal development and maturation is associated with longitudinal changes in brain structure and function in boys and girls. To disentangle the effects of sex steroids from those of age and other endocrine events on brain development, our study design includes 1) selection criteria that establish a well-characterized baseline cohort of healthy 8-year-old children prior to the onset of puberty (e.g., prior to puberty-related sex steroid hormone production); 2) temporally dense longitudinal, repeated-measures sampling of typically developing children at 8-10 month intervals over a 10-year period between the ages of eight and 18; 3) contemporaneous collection of endocrine and other measures of gonadal, adrenal, and growth axis function at each timepoint; and 4) collection of multimodal neuroimaging measures at these same timepoints, including brain structure (gray and white matter volume, cortical thickness and area, white matter integrity, myelination) and function (reward processing, emotional processing, inhibition/impulsivity, working memory, resting-state network connectivity, regional cerebral blood flow). This report of our ongoing longitudinal study 1) provides a comprehensive review of the endocrine events of puberty; 2) details our overall study design; 3) presents our selection criteria for study entry (e.g., well-characterized prepubertal baseline) along with the endocrinological considerations and guiding principles that underlie these criteria; 4) describes our longitudinal outcome measures and how they specifically relate to investigating the effects of gonadal development on brain development; and 5) documents patterns of fMRI activation and resting-state networks from an early, representative subsample of our cohort of prepubertal 8-year-old children.