Düzce Üniversitesi Bilim ve Teknoloji Dergisi (Jul 2022)

Comparison Analysis of Machine Learning Algorithms for Steel Plate Fault Detection

  • Beyda Taşar

DOI
https://doi.org/10.29130/dubited.1058467
Journal volume & issue
Vol. 10, no. 3
pp. 1578 – 1588

Abstract

Read online

Metals are one of the most important building materials of modern times. Especially the production and metalworking process of flat metal sheets is very sensitive. Control of the manufacturing process affects not only the intermediate products but also the quality of final products. Early detection of defects on steel plate surfaces is an important task in industrial production. Process control and mistake detection have traditionally been done manually by experts. However, this method is not proper in terms of both time and cost. With the industrial revolution IR 4.0, machine learning (ML) techniques have been developed to solve fault detection problems in products. This study focuses on developing basic machine learning methods for the detection of six different error classes that may occur during production on steel surfaces. Five standard ML models: LD, KNN, DT, SVM, RF, and deep learning (DNN) model: one-dimensional DNN was developed for the classification problem. The UCI steel plate deformation data set was used as the experimental data set. Five performance criteria: Accuracy, Sensitivity, Specificity, Precision, and F1 value were used to determine the success of the methods. The success rates of LD, KNN, DT, SVM, RF and DNN classification methods were 90.136%, 91.7880%, 93.013%, 93.287%, 95.479%, 96.986%, respectively. The results show the significant impact of the machine learning approach on the steel plate fault diagnosis problem.

Keywords