Journal of the Serbian Chemical Society (Jan 2018)
Theoretical study of the addition and hydrogen abstraction reactions of the methyl radical with formaldehyde and hydroxymethylene
Abstract
The mechanism, thermochemistry and kinetics of the addition and hydrogen-atom abstraction reactions of the methyl radical with formaldehyde and hydroxymethylene were investigated by ab initio calculations. The potential energy surface (PES) of the reactions were calculated by single point calculations at the CCSD(T)/6-311++G(3df,2p) level based on geometries at the B3LYP/6-311++G(3df,2p) level. The rate constants of various product channels were estimated by the variational transition state theory (VTST) and are discussed for the seven reactions in the temperature range of 300–2000 K and at 101325 Pa pressure. The calculated results showed that all the hydrogen abstraction reactions are more favorable than the addition ones.
Keywords