Applied Sciences (Nov 2023)

Experimental Investigation on the Anchorage Performance of a Tension–Compression-Dispersed Composite Anti-Floating Anchor

  • Yuguo Liu,
  • Kai Xia,
  • Botong Wang,
  • Ji Le,
  • Yanqing Ma,
  • Mingli Zhang

DOI
https://doi.org/10.3390/app132112016
Journal volume & issue
Vol. 13, no. 21
p. 12016

Abstract

Read online

Rapid advancements in construction technologies have accelerated the development of complex and deep underground structures, raising concerns about the impact of groundwater on structures, particularly anti-floating measures. Traditional tensioned anchors, commonly used for preventing flotation, suffer from limitations like low pull-out bearing capacity, shallow critical anchoring depth, and localized stress concentration. To overcome these limitations, this paper introduces a tension–compression dispersed composite anchor, which combines casing, load-bearing plates, and tensioned anchors. Comparative tests were conducted between these composite anchors and traditional tensioned anchors to analyze their anchoring behavior. Our results show that tensioned anchors exhibit a stable axial force distribution as anchoring length increases. By identifying abrupt changes in the axial force curve, optimal anchoring lengths for load-dispersed anchors can be determined, thereby enhancing rock and soil strength utilization. The tension–compression-dispersed composite anchor outperforms tensioned anchors, with 1.44 times the ultimate bearing capacity for equivalent anchoring lengths and 1.1 times the capacity for an additional 1 m length. It also displays superior deformation adaptability and structural ductility under high-bearing loads compared to tensioned anchors with extended anchoring lengths. Effectively mobilizing the strength of the lower anchoring segment within the rock and soil results in a lower critical anchoring depth and a more uniform distribution of lateral friction resistance. In conclusion, the tension–compression-dispersed composite anchor offers significant advantages, making it a promising engineering solution for anti-floating anchor systems in complex underground environments.

Keywords