International Journal of Applied Earth Observations and Geoinformation (Feb 2020)

Wall-to-wall spatial prediction of growing stock volume based on Italian National Forest Inventory plots and remotely sensed data

  • Gherardo Chirici,
  • Francesca Giannetti,
  • Ronald E. McRoberts,
  • Davide Travaglini,
  • Matteo Pecchi,
  • Fabio Maselli,
  • Marta Chiesi,
  • Piermaria Corona

Journal volume & issue
Vol. 84
p. 101959

Abstract

Read online

Spatial predictions of forest variables are required for supporting modern national and sub-national forest planning strategies, especially in the framework of a climate change scenario. Nowadays methods for constructing wall-to-wall maps and calculating small-area estimates of forest parameters are becoming essential components of most advanced National Forest Inventory (NFI) programs. Such methods are based on the assumption of a relationship between the forest variables and predictor variables that are available for the entire forest area. Many commonly used predictors are based on data obtained from active or passive remote sensing technologies. Italy has almost 40% of its land area covered by forests. Because of the great diversity of Italian forests with respect to composition, structure and management and underlying climatic, morphological and soil conditions, a relevant question is whether methods successfully used in less complex temperate and boreal forests may be applied successfully at country level in Italy.For a study area of more than 48,657 km2 in central Italy of which 43% is covered by forest, the study presents the results of a test regarding wall-to-wall, spatially explicit estimation of forest growing stock volume (GSV) based on field measurement of 1350 plots during the last Italian NFI. For the same area, we used potential predictor variables that are available across the whole of Italy: cloud-free mosaics of multispectral optical satellite imagery (Landsat 5 TM), microwave sensor data (JAXA PALSAR), a canopy height model (CHM) from satellite LiDAR, and auxiliary variables from climate, temperature and precipitation maps, soil maps, and a digital terrain model.Two non-parametric (random forests and k-NN) and two parametric (multiple linear regression and geographically weighted regression) prediction methods were tested to produce wall-to-wall map of growing stock volume at 23-m resolution. Pixel level predictions were used to produce small-area, province-level model-assisted estimates. The performances of all the methods were compared in terms of percent root mean-square error using a leave-one-out procedure and an independent dataset was used for validation. Results were comparable to those available for other ecological regions using similar predictors, but random forests produced the most accurate results with a pixel level R2 = 0.69 and RMSE% = 37.2% against the independent validation dataset. Model-assisted estimates were more precise than the original design-based estimates provided by the NFI.

Keywords