Weather and Climate Extremes (Sep 2021)
A generic risk assessment framework to evaluate historical and future climate-induced risk for rainfed corn and soybean yield in the U.S. Midwest
Abstract
Fluctuations in temperature and precipitation are expected to increase with global climate change, with more frequent, more intense and longer-lasting extreme events, posing greater challenges for the security of global food production. Here we proposed a generic framework to assess the impact of climate-induced crop yield risk under both current and future scenarios by combining a stochastic model for synthetic climate generation with a well-validated statistical crop yield model. The synthetic climate patterns were generated using the extended Empirical Orthogonal Function method based on historically observed and projected climate conditions. We applied our framework to assess the corn and soybean yield risk in the U.S. Midwest for historical and future climate conditions. We found that: (1) in the U.S. Midwest, about 45% and 40% of the interannual variability in corn and soybean yield, respectively, can be explained by the climate; (2) the risk level is higher in the southwest and northwest regions of the U.S. Midwest corresponding to 25% yield reduction for both corn and soybean compared to other regions; (3) the severity for the 1988 and 2012 major droughts quantified by our method represent 21-year and 30-year events for corn, and 7-year and 12-year events for soybean, respectively; (4) the crop yield risk will increase under a future climate scenario (i.e., Representative Concentration Pathway 8.5 or RCP 8.5 at 2050) compared with the current climate condition, with averaged yield decreases and yield variability increases for both corn and soybean. The framework and the results of this study enable applications for risk management policies and practices for the agriculture sectors.