PLoS ONE (Jan 2014)

Spinal SIRT1 activation attenuates neuropathic pain in mice.

  • Haijun Shao,
  • Qingsheng Xue,
  • Fujun Zhang,
  • Yan Luo,
  • Hao Zhu,
  • Xiaoqing Zhang,
  • Honghai Zhang,
  • Wenlong Ding,
  • Buwei Yu

DOI
https://doi.org/10.1371/journal.pone.0100938
Journal volume & issue
Vol. 9, no. 6
p. e100938

Abstract

Read online

Abnormal histone acetylation occurs during neuropathic pain through an epigenetic mechanism. Silent information regulator 1 (sir2 or SIRT1), a NAD-dependent deacetylase, plays complex systemic roles in a variety of processes through deacetylating acetylated histone and other specific substrates. But the role of SIRT1 in neuropathic pain is not well established yet. The present study was intended to detect SIRT1 content and activity, nicotinamide (NAM) and nicotinamide adenine dinucleotide (NAD) in the spinal cord using immunoblotting or mass spectroscopy over time in mice following chronic constriction injury (CCI) or sham surgery. In addition, the effect of intrathecal injection of NAD or resveratrol on thermal hyperalgesia and mechanical allodynia was evaluated in CCI mice. Finally, we investigated whether SIRT1 inhibitor EX-527 could reverse the anti-nociceptive effect of NAD or resveratrol. It was found that spinal SIRT1 expression, deacetylase activity and NAD/NAM decreased significantly 1, 3, 7, 14 and 21 days after CCI surgery as compared with sham group. In addition, daily intrathecal injection of 5 µl 800 mM NAD 1 h before and 1 day after CCI surgery or single intrathecal injection of 5 µl 90 mM resveratrol 1 h before CCI surgery produced a transient inhibitory effect on thermal hyperalgesia and mechanical allodynia in CCI mice. Finally, an intrathecal injection of 5 µl 1.2 mM EX-527 1 h before NAD or resveratrol administration reversed the anti-nociceptive effect of NAD or resveratrol. These data indicate that the reduction in SIRT1 deacetylase activity may be a factor contributing to the development of neuropathic pain in CCI mice. Our findings suggest that the enhancement of spinal NAD/NAM and/or SIRT1 activity may be a potentially promising strategy for the prevention or treatment of neuropathic pain.