BMC Public Health (Sep 2020)

Association between long-term exposure to air pollutants and cardiopulmonary mortality rates in South Korea

  • Jeongeun Hwang,
  • Jinhee Kwon,
  • Hahn Yi,
  • Hyun-Jin Bae,
  • Miso Jang,
  • Namkug Kim

DOI
https://doi.org/10.1186/s12889-020-09521-8
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Background The association between long-term exposure to air pollutants, including nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3), and particulate matter 10 μm or less in diameter (PM10), and mortality by ischemic heart disease (IHD), cerebrovascular disease (CVD), pneumonia (PN), and chronic lower respiratory disease (CLRD) is unclear. We investigated whether living in an administrative district with heavy air pollution is associated with an increased risk of mortality by the diseases through an ecological study using South Korean administrative data over 19 years. Methods A total of 249 Si-Gun-Gus, unit of administrative districts in South Korea were studied. In each district, the daily concentrations of CO, SO2, NO2, O3, and PM10 were averaged over 19 years (2001–2018). Age-adjusted mortality rates by IHD, CVD, PN and CLRD for each district were averaged for the same study period. Multivariate beta-regression analysis was performed to estimate the associations between air pollutant concentrations and mortality rates, after adjusting for confounding factors including altitude, population density, higher education rate, smoking rate, obesity rate, and gross regional domestic product per capita. Associations were also estimated for two subgrouping schema: Capital and non-Capital areas (77:172 districts) and urban and rural areas (168:81 districts). Results For IHD, higher SO2 concentrations were significantly associated with a higher mortality rate, whereas other air pollutants had null associations. For CVD, SO2 and PM10 concentrations were significantly associated with a higher mortality rate. For PN, O3 concentrations had significant positive associations with a higher mortality rate, while SO2, NO2, and PM10 concentrations had significant negative associations. For CLRD, O3 concentrations were associated with an increased mortality rate, while CO, NO2, and PM10 concentrations had negative associations. In the subgroup analysis, positive associations between SO2 concentrations and IHD mortality were consistently observed in all subgroups, while other pollutant-disease pairs showed null, or mixed associations. Conclusion Long-term exposure to high SO2 concentration was significantly and consistently associated with a high mortality rate nationwide and in Capital and non-Capital areas, and in urban and rural areas. Associations between other air pollutants and disease-related mortalities need to be investigated in further studies.

Keywords