International Journal of Molecular Sciences (Feb 2023)

Second Generation of Antiepileptic Drugs and Oxidative Stress

  • Kamil Kośmider,
  • Maciej Kamieniak,
  • Stanisław J. Czuczwar,
  • Barbara Miziak

DOI
https://doi.org/10.3390/ijms24043873
Journal volume & issue
Vol. 24, no. 4
p. 3873

Abstract

Read online

Epilepsy is a chronic disease of the central nervous system characterized by recurrent epileptic seizures. As a result of epileptic seizure or status epilepticus oxidants are excessively formed, which may be one of the causes of neuronal death. Given the role of oxidative stress in epileptogenesis, as well as the participation of this process in other neurological conditions, we decided to review the latest state of knowledge regarding the relationship between selected newer antiepileptic drugs (AEDs), also known as antiseizure drugs, and oxidative stress. The literature review indicates that drugs enhancing GABA-ergic transmission (e.g., vigabatrin, tiagabine, gabapentin, topiramate) or other antiepileptics (e.g., lamotrigine, levetiracetam) reduce neuronal oxidation markers. In particular, levetiracetam may produce ambiguous effects in this regard. However, when a GABA-enhancing drug was applied to the healthy tissue, it tended to increase oxidative stress markers in a dose-dependent manner. Studies on diazepam have shown that it exerts a neuroprotective effect in a “U-shaped” dose-dependent manner after excitotoxic or oxidative stress. Its lower concentrations are insufficient to protect against neuronal damage, while higher concentrations produce neurodegeneration. Therefore, a conclusion follows that newer AEDs, enhancing GABA-ergic neurotransmission, may act similarly to diazepam, causing neurodegeneration and oxidative stress when used in high doses.

Keywords