Advanced Energy & Sustainability Research (Nov 2021)

NiSe@Ni1−xFexSe2 Core–Shell Nanostructures as a Bifunctional Water Splitting Electrocatalyst in Alkaline Media

  • Dmitrii Rakov,
  • Chunyu Sun,
  • Ziang Lu,
  • Siwei Li,
  • Ping Xu

DOI
https://doi.org/10.1002/aesr.202100071
Journal volume & issue
Vol. 2, no. 11
pp. n/a – n/a

Abstract

Read online

Herein a facile synthesis methodology is reported that results in a unique 3D NiSe@Ni1−xFexSe2 core–shell nanostructure on nickel foam substrate, where Ni1−xFexSe2 nanosheets are fabricated on NiSe nanowires through an iron‐doping‐induced phase transformation process under solvothermal conditions. This material demonstrates stable hydrogen and oxygen evolution activity in 1.0 m KOH with a small overpotential of 153 mV@−10 mA cm−2 and 236 mV@100 mA cm−2, respectively. Furthermore, an efficient and stable water electrolyzer with NiSe@Ni1−xFexSe2/nickel foam as both anode and cathode is fabricated, which requires a low overpotential of 1.60 V to deliver a current density of 10 mA cm−2. Such ion‐doping‐induced phase transformation paves a new way for fabricating highly efficient electrocatalysts for energy storage and conversion.

Keywords